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1. Implementation Details and Pseudo Codes

In this section, we provide the implementation details
of training the classifiers and pseudo codes for the Merge
(Alg. 3), Refine (Alg. 1) operations and the overall pipeline
(Alg. 2) described in the main paper.

1.1. Pseudo Codes

Algorithm 1 Refine Clusters (refine clusters)
1: Input: W , b, Memory M, Clusters C, number of clus-

ters m
2: for k 2 {1, 2, · · · ,m} do

3: for fk in C[k] do

4: if W[k, :]T fk + b[k] < 0 then

5: Remove sample from C[k]
6: ck = len(C[k])
7: Mw[k, :] =

(ck⇤M[k,:]�fk)
ck�1 ; ck = ck � 1

8: end if

9: end for

10: end for

11: return W , b, M

Algorithm 2 Overall Pipeline
1: Input: Discovery Set D containing known object cate-

gories Ok; covariance matrix ⌃, mean µ0; Storage S

containing Semantic, Working memory (Ms,Mw).
2: Initialization: Ms  semantic prior
3: for True do

4: for I 2 D1 do

5: f, r = encode(I) // Extract features and ROIs
6: flag = retrieve(S, f)
7: update or create(flag, Ms, Mw, f)
8: end for

9: filter(Mw) // Remove small clusters
10: merge clusters(Mw, Ww, bw)
11: refine clusters(Mw, Ww, bw)
12: refine clusters(Ms, Ws, bs)
13: for I 2 D2 do

14: f, r = encode(I) // Extract features and ROIs
15: flag = retrieve(S, f)
16: if flag == ‘in Ms’ then

17: update(Ms, f)
18: end if

19: end for

20: merge clusters(Ms, Ws, bs)
21: refine clusters(Ms, Ws, bs)
22: D1,D2 = D2,D1

23: end for
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Algorithm 3 Merge Clusters (merge clusters)
1: Input: W , b, Memory M, Cluster C,
2: while rounds < rmax do

3: wj(x) = W[j, :]Tx+ b[j]
4: A = [aij ] = 1

2 (max(0, wi(M[j, :])) +
max(0, wj(M[i, :])))

5: D = diag(A⇥ 1)
6: L = D �A
7: [V,E] = eig(L)
8: n = where(E < 0.01)
9: N = kmeans(V [:, n], len(n))

10: for cluster c 2 N do

11: if len(c) > 1 then

12: ca  largest cluster in c with classifier (Wa,
ba)

13: for cn 2 c \ {ca} do

14: for x 2 cn do

15: affinity a = (WT
a x+ba)� (WT

n x+bn)
16: if affinity > 0 then

17: cn  cn \ {x};ca  ca [ {x}
18: end if

19: end for

20: end for

21: end if

22: end for

23: end while

24: return W , b

1.2. Estimation of ⌃ and µ0

We extract N = 150 boxes and their corresponding clas-
sification head features after ROI [1] pooling from each im-
age. We use an online batch update equation to estimate ⌃
and µ0. Let ⌃old, µold

0 be the estimated covariance matrix
and mean respectively using m samples and ⌃current, µcurrent

0

be the covariance matrix and mean for the N samples. The
covariance matrix and mean for m+N samples can be es-
timated as follows

⌃̂old =
m� 1

m+N � 1
⌃̂old +

N � 2

m+N � 1
⌃̂current+

m ⇤N

(m+N) ⇤ (m+N � 1)
⇥

(µold
0 � µcurrent

0 )(µold
0 � µcurrent

0 )T

(1)

µold
0 =

m ⇤ µold
0 +N ⇤ µcurrent

0

m+N
(2)

m m+N (3)

This step needs to be performed only once before the dis-
covery process.

Figure 1: Fraction of images per class in the discovery and ablation sets.

2. Classes removed from ImageNet

In Table 1, we show classes removed from ImageNet for
every novel class in COCO dataset.

3. Training details

Training backbone. We train a ResNet-101 [2] model
on the 932 ImageNet� classes, using stochastic gradient
descent (SGD) with an initial learning rate, momentum,
weight decay of 0.1, 0.9, 1⇥10�4, respectively and a mini-
batch size of 256 on 8 GPUs. We train for 90 epochs and
decrease the learning rate by a factor of 10 every 30 epochs.
This model achieves top-1/5 accuracy of 78.12/93.97% on
the ImageNet� val set. Comparison of this to the same
model trained on ImageNet, which gets 76.4/92.9% on Im-
ageNet val set, ensuring that these models are reasonably
similar. Additional details are provided in the supplemen-
tary section.
Training known detector. Using ImageNet� model
weights as initialization, we train a ResNet-101 Faster R-
CNN on VOC 2007 train set for 20 known classes (known
detector), using SGD for 10 epochs with a minibatch size
of 24 on 4 GPUs. We use an initial learning rate of 0.01
and decrease it by a factor of 10 after 8 epochs. This
ImageNet�-pretrained model achieves 72.03 mAP on the
VOC 2007 test set (compare to ImageNet-pretrained model,
which gets 74.44 mAP).

4. Details about the Ablation Set

We perform all the experiments in Section 5.4 of the
main paper on a random subset of 5000 images. For ev-
ery object in the dataset, we plot the fraction of images in
the discovery (82081 images) and ablation (5000 images)
set and show it in Fig. 1. We can see that the distribution of
the training and ablation sets are very similar.



Table 1: Classes removed from ImageNet for each novel class in COCO.

Novel ImageNet Novel ImageNet Novel ImageNet Novel ImageNet

Class Class Class Class Class Class Class Class

toilet toilet seat teddy bear teddy kite kite stop sign street sign

tennis racket racket snowboard � carrot � zebra zebra

oven microwave keyboard
computer keyboard
typewriter keyboard

scissors � fire hydrant �

mouse mouse clock
analog clock
digital clock
wall clock

frisbee � apple �

hair drier hand blower cup measuring cup & cup traffic light traffic light toaster toaster

bowl mixing bowl;soup bowl microwave microwave bench park bench book bookcase;comic book

orange orange elephant
Indian elephant
African elephant

tie
bolo tie
bow tie
Windsor tie

banana banana

knife letter opener pizza pizza fork forklift sandwich �

umbrella umbrella bear

koala bear & brown bear
American black bear
ice bear & sloth bear
giant panda

vase vase toothbrush �

spoon wooden spoon giraffe � sink � wine glass beer glass

handbag � cell phone
cellular telephone
dial telephone
pay-phone

broccoli broccoli refrigerator refrigerator

laptop laptop remote remote control surfboard � hot dog hotdog

baseball bat � sports ball

baseball & basketball
croquet ball & golf ball
ping-pong ball & rugby ball
soccer ball & tennis ball
volleyball

skateboard � bed studio couch

donut � truck
fire engine & garbage truck
pickup & tow truck
trailer truck

skis � parking meter parking meter

suitcase � cake � baseball glove � backpack backpack

Table 2: Number of discovery iterations.

Rounds CorLoc CorRet AuC #disc.

objs
@0.5 @0.2

1 40.09 66.22 3.84 10.05 41
2 42.21 66.07 4.27 10.97 45
3 42.52 66.09 4.47 11.27 49
4 42.66 66.39 4.53 11.27 47

Table 3: Discovery threshold

Threshold CorLoc CorRet AuC # objs

@0.5 @0.2

0.50 42.73 48.60 0.80 3.26 3
0.55 42.73 51.76 1.17 3.21 5
0.60 42.73 53.12 1.86 5.45 14
0.65 42.73 56.24 2.91 7.86 26
0.70 42.57 63.12 3.70 9.60 44
0.75 More than 2000 clusters

5. Extensive Literature Survey

Object Discovery: Hsu et al. [3–5] utilize prior knowl-
edge to facilitate the discovery of image categories. They
assume availability of a source dataset with categorical la-

bels and learn a network to predict semantic similarity in
a class-agnostic way. They transfer the learnt knowledge,
to learn a clustering network on the target dataset with su-
pervision provided by the similarity network. One major
concern with such approaches is that the transferred simi-



Figure 2: Figure showing the plots of Cumulative Purity vs Coverage, Discovered objects vs Coverage and Coverage vs Number of clusters. These plots
are helpful for comparison across future discovery methods. In each case the higher the curve the better. The plots in top row are evaluated with an IoU
threshold of 0.5 and the bottom row with a threshold of 0.2.

larity function might produce noisy predictions in the target
dataset. Hsu et al. [3–5] posit that dense pair-wise similarity
constraints can greatly alleviate this issue. For this method,
the number of unknown classes/clusters need to be known
a-priori.

Han et al. [6] follow a similar pipeline as above. At
its core, their method is based on a deep clustering algo-
rithm that clusters data while learning a good data represen-
tation. They learn a feature extractor on the labelled data,
and transfer this knowledge by fine-tuning on the unlabeled
data and clustering the samples. They also provide a method
to determine the number of clusters.

Arandjelović et al. [7] and Singh et al. [8] proposed
GAN-based methods for Object Discovery. Arandjelović
et al. [7] trained a GAN to segment an object and paste
it on another image with the rationale that for the gen-
erator to learn and discover objects, it should be able to
fool a discriminator by copying the objects into appropri-
ate backgrounds. Singh et al. [8] proposed FineGAN, a
novel unsupervised GAN framework, which disentangles
the background, object shape, and object appearance to hi-
erarchically generate images of fine-grained object cate-
gories. They demonstrate the prowess of their unsupervised
disentanglement by using the features from the FineGAN to

cluster real world images and discover concepts.
Lee et al. [9] improved upon their previous work by

proposing an iterative procedure for category discovery.
They proposed a self-paced approach that instead focuses
on the easiest instances first, and progressively expands its
repertoire to include more complex objects. At each cycle
of the discovery process, they re-estimate the easiness of
each subwindow in the pool of unlabeled images, and then
retrieve a single prominent cluster from among the easiest
instances. While our proposed method is also iterative, we
do not define any notion of “easiness”. We instead let the
frequency of occurrence and visual saliency of an object de-
cide when it is learnt in the pipeline.

Doersch et al. [10] leverage context as supervision to
discovery visually consistent clusters. The proposed ap-
proach gradually discovers visual object clusters together
with a segmentation mask.

Kang et al. [11] leveraged multiple segmentations to pro-
cess noisy clusters and extracted object models as groups of
mutually consistent segments. They achieved this by en-
forcing constraints on geometry (scale, orientation) and ap-
pearance (color, texture and shape).

Wang et al. [12] formulated the unsupervised object
category discovery as a sub-graph mining problem from



a weighted graph of object proposals, where nodes corre-
spond to object proposals, and edges represent the similar-
ities between neighbouring proposals. The objects are dis-
covered by finding sub-graphs of strongly connected nodes,
with each sub-graph capturing one object pattern. Au-
thors proposed a maximal-flow based algorithm to solve the
graph mining in an efficient manner. Our method is not for-
mulated as an operation on a graph. One of the steps to
improve our object clusters leverages Spectral Clustering
[13–15] to merge clusters representing similar objects.

Xie et al. [16] proposed a method to provide dense
segmentation masks for object discovery in videos. They
considered anything which moves as a foreground object
in their work and utilized RGB and Optical Flow features
as inputs. They linked pixels using a pixel linking criteria
and applied a Pixel Trajector RNN (PT-RNN) to learn per-
pixel representations for foreground clustering. The system
is trained end-to-end using a multi-loss setup. Unlike Xie et
al. [16] we attempt to discover objects from images rather
than videos which is a slightly difficult task given the un-
availability of motion as supervision.

Sivic et al. [17] successfully applied probabilistic La-
tent Semantic Analysis (pLSA), developed in statistical text
literature, for topic discovery in a corpus to category dis-
covery. They leveraged a visual analogue of a word formed
by vector quantizing SIFT [18] like region features. Using
the proposed method they found object categories and ap-
proximate spatial position for a small set of objects.
Incremental Learning: Incremental learning methods
learn object models of novel categories in a sequential
manner without compromising performance on the exist-
ing object categories. However they assume the availability
of labelled data for learning the new category. [19] pro-
posed a novel approach, called ‘Learning without Memo-
rizing (LwM)’, to preserve the information about existing
categories, without storing any of their data, while mak-
ing the classifier progressively learn the new classes. Au-
thors demonstrated that penalizing the changes in classi-
fiers’ attention maps helps retain information of the exist-
ing classes, as new classes are added, thereby preserving its
performance on existing categories.

[20] proposed an Incremental learning method which
leverages dual memory to alleviate catastrophic forgetting
in image classification. The first memory stores exemplars
of existing classes while the second memory is used to store
the class statistics of existing classes learnt during the ini-
tial training. While the current work is not directly related to
incremental learning, IL methods can be employed to learn
powerful models once an oracle (human/machine) provides
labels for the clusters obtained using our method.
Open World Recognition: [21] equip open world learn-
ing models with incremental capabilities to evaluate clas-
sification models in a more realistic settings. They evalu-

ated their model by incrementally increasing their vocab-
ulary of known categories and simultaneously evaluate on
known and novel categories. While current work is an open
world problem, we do not assume labels for data available
incrementally.
Never Ending Learning: [22] proposed a webly super-
vised fully automated method to learn all possible variations
of a concept. Their approach leverages vast resources of
online books to discover the vocabulary of variance, and in-
tertwines the data collection and modeling steps to alleviate
the need for explicit human supervision in training object
models. NEIL [23] is a constrained semi-supervised learn-
ing (SSL) system that exploits the big scale of visual data to
automatically extract common sense relationships and then
uses these relationships to label visual instances of exist-
ing categories. Authors aimed to build the world’s largest
visual structured knowledge base with minimum human ef-
fort, that reflects the factual content of the images on the
Internet. Unlike these methods, we aim to discover and lo-
calize visual concepts in a fully unsupervised manner.

6. Additional Experiments

Discovery Rounds: While our approach can be run in a
never-ending fashion, to understand how many rounds are
needed for this dataset we run our method for multiple
rounds and show the results in Table 2. As the number of
rounds increase, our approach discovers more objects with
an increasing AuC. However, after three rounds, the perfor-
mance saturates with no increase in number of discovered
objects. Therefore, in our main experiments, we run our
method for three rounds and report the results.
Discovery Threshold: During the retrieval operation a fea-
ture is assigned to a cluster in Mw based on a threshold
on the cosine similarity of the feature with the centroid of
the cluster. This threshold indirectly controls the number of
clusters and thereby, the number of objects discovered by
our pipeline. In Table 3 we perform discovery with various
thresholds. We run our full pipeline with a threshold of 0.7.

7. Evaluation Plots

To facilitate comparison with future discovery meth-
ods, in Fig. 2 we provide the plots of Cumulative Purity
(column-1) and Number of discovered objects (column-2)
vs Coverage and Coverage vs # of clusters (column-3) for
IoU thresholds of 0.5 and 0.2 (top and bottom) respectively.

8. Qualitative Results

In this section we show examples of clusters obtained
from our method. Kindly refer to Figures 3, 4, 5, 6, 7, 8, 9.



Figure 3: Qualitative results: Clusters discovered by our approach.



Figure 4: Qualitative results (cont.): Clusters discovered by our approach.



Figure 5: Qualitative results (cont.): Clusters discovered by our approach.



Figure 6: Qualitative results (cont.): Clusters discovered by our approach.



Figure 7: Qualitative results (cont.): Clusters discovered by our approach.



Figure 8: Qualitative results (cont.): Clusters discovered by our approach.



Figure 9: Qualitative results (cont.): Clusters discovered by our approach.
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