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Goal: Discover novel objects and learn models to detect them human supervision.

Shortcomings of standard supervised paradigm
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Benchmark
Labeled datasets: Salient features:
* |ImageNet
e Pascal VOC of
In-the-wild discovery labeled & discovery set
dataset: COCO e |Localization

Metrics
Our benchmark: Other methods*™:

* Purity vs. Coverage ¢ CorlLoc
* mMAP for learned * CorRet

detectors * Det-Rate
 # of objects *None evaluates discovery
discovered performance

Large-scale Object discovery on the entire COCO train2014

(80k images). Comparisons with scalable clustering
methods using AuC for unknown classes.

Method AuC@0.5 AuC@0.2 #disc. objs

K-means 3.34 7.23 42
FINCH 3.03 6.99 42
Ours 3.60 9.11 46
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DD COCO). In this illustration these correspond to (clockwise):
traffic-light, tie, umbrella, bear

Our Discovery and Localization Benchmark & Framework

benchmark for object
discovery & localization

% Scalable never-ending
in-the-wild concept
discovery framework

Dual Memory Framework for Unsupervised Object Discovery

Framework: Iterative, Online, and Scalable
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Shortcomings of contemporary discovery methods

Not scalable
[Cho et al., CVPR 2015] [Vo et al., CVPR 2019] [Vo et al., ECCV 2020}

Encoding: Dual Memory
Region
Proposals Contains clusters (“slots”), represented 1 Semantic Memory Working Memory
Storage: as a Centroid or a Classifier e Long-term memory ¢ Short-term memory
Dual Memory Centroid Classifier * “Semantic Prior” init. * Nullinit.,

o o  Reliable associations ¢ Unreliable associations
Retrieval: Slow updates
Decide * |naccurate o * Infrequent updates ¢ Frequent updates
seen/unseen? e Cos.similarity ¢ Cls. score » Classifier > Centroid

Benchmark Details and Results

Smaller-scale Object discovery on subsets of COCO train2014.
Comparison with contemporary discovery methods using AuC
for unknown classes.

Method Conf. #imgs. CorlLoc CorRet DetRate

Voet.al CVPR’19 2.5k 6.62 80.00 4.73
Vo et. alf CVPR’19 2.5k 6.34 70.00 5.17
Ours 2.5k 43.00 64.22 48.56
Voet.al ECCV’20 20k 15.777 100 11.56
Ours 20k 41.41 64.60 46.81

T: OSD with ResNet-101 Faster R-CNN proposals and classification-head features (same as Ours).

Detection performance (mAP) for object detectors on COCO
minival, trained using oracle labels for clusters.

Classes GT-IoU: 0.5 GT-IoU: 0.2
AP@05 AP@02 AP@0.5 AP@0.2
All (80) 2.69 4.44 2.62 4.37
Novel (60) 1.87 3.50 1.76 3.42
Novel' 5.23 6.47 5.45 6.40

T: mAP of classes with AP greater than chance.

Sample detections and class-wise AP
on COCO minival using our object
detectors trained novel classes using

oracle labels.

Class-wise AP@(.5 on COCO-minival
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