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Abstract

We tackle object category discovery, which is the prob-
lem of discovering and localizing novel objects in a large
unlabeled dataset. While existing methods show results
on datasets with less cluttered scenes and fewer object in-
stances per image, we present our results on the challeng-
ing COCO dataset. Moreover, we argue that, rather than
discovering new categories from scratch, discovery algo-
rithms can benefit from identifying what is already known
and focusing their attention on the unknown. We propose a
method that exploits prior knowledge about certain object
types to discover new categories by leveraging two mem-
ory modules, namely Working and Semantic memory. We
show the performance of our detector on the COCO mini-
val dataset to demonstrate its in-the-wild capabilities.

1. Introduction

Unsupervised visual category discovery aims to auto-
matically identify recurring “patterns,” which can be objects
or object parts, and consequently learn recognition models
to identify them from a large collection of unlabeled im-
ages with minimal human supervision. Such algorithms can
dramatically reduce annotation costs as they only need la-
bels for already mined object clusters. Moreover, automati-
cally discovering categories from unstructured data can help
mitigate the biases that occur when manually constructing
datasets by collecting images for a fixed-set of concepts.
Then, why is this setup not a mainstay in recognition?

A key issue is the lack of consistent task definition,
with two disparate families of approaches aiming to ad-
dress unsupervised object discovery. The first set of ap-
proaches [1–4] reduces the problem to co-localization or co-
segmentation, by only answering whether a pair of images
share the same object and then localizing them. The other
set of, arguably more generic, approaches [5–7] use clus-
tering techniques to discover semantically similar regions
and can sometimes leverage prior knowledge. Because of
these different goals, each set defines evaluation protocols
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that are incompatible with others. The second issue that
limits the wide adoption of unsupervised discovery is the
scalability of contemporary approaches – most works use
small curated datasets and cannot scale to a realistic setup
with a large number of images, a large number of object
categories, and complex images (e.g., a large number of ob-
jects and categories per image). Finally, a desirable prop-
erty of unsupervised discovery approaches, often lacking in
contemporary works, is online processing of new data as it
arrives. To address these issues, it is necessary to define
a standardized protocol (datasets and metrics), that more
closely reflect real-world requirements of a task like unsu-
pervised object discovery.

Towards this, this paper proposes a large-scale bench-
mark for evaluating unsupervised object discovery ap-
proaches and a scalable never-ending discovery approach
that can deal with real-world complexities. Our approach is
loosely inspired by how humans learn – continuously, utiliz-
ing prior knowledge. Our benchmark is designed to evalu-



ate such continuous and knowledge-driven learning and re-
flect real-world complexities and scale, and as a practical
consideration, it is amenable to using available pretraining
datasets in object recognition literature.

Motivation: Humans never stop learning [8, 9]. Since in-
fancy, we continuously stumble upon objects that we have
never encountered before and learn to recognize them with
time [10]. This process is mostly reliant on the current
knowledge we possess. For example, a toddler, with a pet
dog at home, may point to a lion at a zoo and mistakenly call
it a dog; but the toddler is unlikely to point to a bench, be-
cause she hasn’t learned about chairs and couches yet [11].
This alludes to a continuous learning paradigm, where we
notice new objects, associate them with our current knowl-
edge [12], and update our knowledge (learn new concepts
or update existing concepts). So how are we able to do this
so effortlessly, and often unconsciously?

Studies have demonstrated that “memory” is the primary
form of representation that brings together perception and
learning [13], and knowledge, categories, etc., all derive
from memory [14]. Despite overwhelming evidence of its
importance, memory is arguably one of the least studied
components in computational visual recognition; its role of-
ten ceded to other modules; e.g., pretrained weights of a
neural network [15], forms of knowledge-graphs [16, 17].
In this work, we investigate how memory can be used to
represent knowledge and drive the discovery of new con-
cepts and develop a continuous learning approach that is
inspired by well established memory processes [18].

Contributions: Our two complimentary contributions are:
a scalable concept discovery and localization approach, and
a realistic protocol for evaluating discovery approaches.

Our first contribution, a never-ending concept discov-
ery and localization framework, is built using two memory
modules: Semantic and Working memory, jointly referred
to as dual memory. Semantic memory is the portion of
long-term memory that contains concepts from past experi-
ence (current knowledge). Working memory, on the other
hand, is synonymous to short-term memory and is respon-
sible for accumulating and temporarily holding information
for processing. Our final algorithm consists of carefully
crafted operations which compare a new region to the dual
memory, decide if it is known (or already discovered) or a
novel category, and accordingly update the relevant mem-
ory modules. When sufficient concepts accumulate in the
working memory, our algorithm amalgamates learned con-
cepts from the working memory into the semantic memory,
which then become part of prior knowledge. This process
can continue in a never-ending, online fashion.

Our second contribution is a simple, realistic bench-
mark for never-ending concept discovery, not only to eval-
uate our approach, but also to enable future works to com-
pare on a standardized protocol. We argue that most stan-

dard benchmarks are either not realistic, are designed for
classification, are suited more for co-segmentation than dis-
covery, are not labeled to evaluate performance, or are too
small in scale. In addition, earlier works on never-ending
and large-scale learning [19–21] either assume an a-priori
list of concepts, which is unrealistic, utilizes crawled in-
ternet images which is not reproducible, or use proprietary
datasets which cannot be released, ruling out future compar-
isons. Therefore, we propose a simple, realistic benchmark
for never-ending concept discovery and localization.

Our benchmark is designed to leverage three existing
datasets, ImageNet, Pascal VOC, and COCO. We assume
ImageNet and VOC are the labeled datasets available for
pretraining and detecting 20 classes, respectively, from
which prior knowledge can be derived; and COCO is the
in-the-wild dataset to perform concept discovery and local-
ization. The 20 VOC classes are treated as known classes,
and the 60 additional classes in COCO are unknown classes
used to evaluate a subset of the discovered objects. Other
discovered objects are qualitatively assessed. This setup has
six desirable properties: (1) these datasets are widely used,
and therefore, we know the performance if all 80 classes
were labeled; (2) the discovery set consists of all known
and a variety of unknown classes; (3) the images in COCO
have a slightly different distribution from VOC; (4) dataset
is large-scale; (5) bounding box labels are available and (6)
future progress on these datasets [22] can be leveraged.

2. Related Works
Similar learning paradigms. Several paradigms have
been proposed to imitate continuous learning models, in-
cluding, but not limited to, incremental learning [23–27],
never-ending learning [20, 21], open-world learning [28],
semi-supervised [19, 29, 30], and omni-supervised learn-
ing [31]. Each of these paradigms is actively pursued
by computer vision and machine learning researchers; and
an equitable and comprehensive discussion with even the
relevant approaches is unrealizable given the manuscript
length constraints. We discuss the differences between
these paradigms and the problem setup for our approach.

Most approaches mentioned above differ from ours in
one of the following aspects: (a) our focus is the lo-
calization task, unlike most incremental [23–26], open-
world [28], and semi-supervised learning approaches [19];
(b) we do not assume any a-priori list of concepts of in-
terest (novel classes), unlike most incremental [23–26],
semi-supervised [19], and never-ending learning frame-
works [20, 21]; (c) unlike contemporary discovery meth-
ods [1–4], we operate in a real-world setup, where images
contain many objects, including ones that are similar to
known objects; (d) scalability to larger datasets and objects.
While our work shares the goal of [20] in learning models
for never-ending learning for training object detectors, there



is one technical and several practical differences. First, [20]
is language-driven (ref. §1.1c in [20]), i.e., it starts with an
a-priori list of concepts and then searches images for that
concept, and then attempts to build the detectors. As op-
posed to this, our approach does not start with any a-priori
list, and discovers in the set of images it is given. We believe
this is a crucial distinction. Second, [20] assumes at least
a few ‘canonical’ images for concepts and uses it to train
detectors (cf. §3.1 in [20]). In contrast, our approach can
discover and localize objects directly in complex images.
Finally, data used by [20] has not been publicly released
making it impossible to compare with it fairly on the same
set of images. Moreover, the released code relies on the
discussed assumptions, making it unsuitable for the current
setup (COCO dataset).
Object Category Discovery. Category discovery is the
problem of identifying semantically similar recurring pat-
terns in unlabelled data. Object category discovery works
can be broadly divided into two categories: image [32–37]
and region-based approaches [2–7, 38–49]. Our discovery
framework is a region-based approach. Recent region-based
methods [1–4], do not assume any prior knowledge and
solve an optimization problem to discover new objects. Un-
like such methods, we assume a set of known objects and
leverage this knowledge to discover novel objects, similar
to [5, 6]. Lee et al. [5] proposed object graphs to incorpo-
rate context which improves clustering for the discovery of
novel categories. In contrast, we use cluster prototypes to
improve clustering; and unlike [5], we do not require the
number of clusters as an input. Improving on their previ-
ous work [5], Lee et al. [6] proposed an iterative, self-paced
approach for category discovery that focuses on the easiest
instances first, and then progressively expands its repertoire
to include more complex objects. Our approach is implic-
itly self-paced and does not need a specific curriculum def-
inition for discovery.

For an in-depth review of other object discovery meth-
ods, memory formulations, and our relationship to learn-
ing paradigms (e.g., supervised, incremental, open-world,
never-ending), kindly refer to the supplementary material.

3. Approach Overview
In this section, we illustrate our approach using an ex-

ample, as shown in Figure 2. For simplicity, we assume
the knowledge of two objects (“known” categories), namely
human and car. Our system consists of three main modules,
Encoding, Storage and Retrieval. The Encoding module
is a Region Proposal Network (RPN) [50] that gives candi-
date regions and corresponding features. The Storage mod-
ule consists of two memory blocks, the Semantic and Work-
ing Memory. The Semantic memory consists of slots that
store representations to identify regions of “known” or pre-
viously discovered objects while the slots in Working mem-
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Figure 2: An example illustrating our dual-memory formulation.

ory store representations for potentially “discoverable” ob-
ject. In Figure 2, the Semantic memory is initialized with
two slots (human and car classes) and the Working memory
is null initialized. The Retrieval module decides whether
a region belongs to the Semantic (“known”/discovered) or
the Working (to be discovered) memory. These modules are
discussed in detail in the next section.

Our system operates sequentially, processing one image
at a time. First, the Encoding module processes the im-
age and outputs candidate regions and features. The Re-
trieval module assigns each region to either Semantic or
Working memory. In Figure 2, after the first iteration, three
regions (two humans and a car) have been assigned to the
two slots of the Semantic memory and the remaining re-
gions have been assigned to four different slots (Slot 1-4)
in the Working memory. In the next iteration, the retrieval
module assigns three regions (one human and two vehicles)
to the semantic memory while, the remaining regions have
been assigned to two previously created slots (Slot 1-2) and
two new slots (Slot 5-6). Note that the retrieval module
can either decide to populate an existing slot in the Working
memory or create new patterns if necessary. This capabil-
ity eliminates the need to know the number of “unknown”
objects apriori. Once all the images are processed and we
perform Memory Consolidation, which step transfers the
knowledge acquired in the Working memory to the Seman-
tic memory, this updating the list of known categories.

4. Framework Details
In this section, we describe the encoding, storage, and

retrieval modules, and how they interact with each other in
detail (refer to Figure 3).
Encoding: The goal of the encoding module is to pro-
cess an input image and extract representations to be subse-
quently used by the discovery pipeline. Our encoding mod-
ule is an object detector, Faster R-CNN [50], trained on a
dataset (PASCAL VOC [51]) consisting of a set of known
objects (20 objects). Given an image, we use N (= 150)
proposals/boxes from a region proposal network [50] and
their corresponding ConvNet features from the classifica-
tion head (referred to as encoded representation), for subse-
quent discovery. This module is akin to the encoding pro-
cess in human memory, which converts sensory inputs to
representations to be used by other processes.
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Figure 3: Overview of our Dual Memory formulation. Refer to Section 4 for details.

Storage: The storage module consists of two memory
blocks: Semantic (Ms) and Working Memory (Mw). Ms

serves the purpose of storing the prior and discovered con-
cepts, and is initialized with ‘semantic priors’, computed
using an object detector trained on known classes. It resem-
bles the human’s long-term memory in that aspect, which
stores prior or acquired knowledge. On the other hand,Mw

is used to temporarily store and manipulate representations
of recently encountered objects, which can potentially be
discovered, and is null initialized. The working memory re-
sembles the short-term memory. A concept is considered
discovered when we encounter enough instances of it, are
able to associate them, and learn a new class from them.
One of our key contributions is exploring suitable formula-
tions for this dual memory.

Storage slots. Both the memory modules are composed of
slots, where each slot represents the regions belonging to it
from the data encountered so far. A slot’s representation,
computed using features of all regions belonging to the par-
ticular slot, is critical to our approach. If slots represent
object classes, then the slot representations are essentially
models for these classes and are ‘trained’ using all instances
that belong to this class/slot. These representations are used
by the retrieval module to decide if a new region/instance
‘corresponds’ to a particular slot. Representing and operat-
ing on slots are the cornerstones of our framework, there-
fore, the slot representation needs to be: (a) effective in
representing a large-set of instances corresponding to that
slot, (b) efficient in retrieval operations (e.g., associate new
instances, updates), and (c) scalable to a large number of
object instances and classes. In this work, we explore two
choices for slot representations: feature centroids of all the
instances belonging to a slot, and a classifier trained on the
features, each with a different speed/accuracy trade-off.

The centroid representation is a straightforward cen-
troid of all the instances belonging to a slot, µC; which can
be updated efficiently using the cumulative moving aver-
age. We evaluate the association of an instance feature f
with the slot using cosine similarity, cosine(f, µC).

The classifier representation learns a classifier using all
the instances belonging to a slot and classification score is
used to evaluate association. We train LDA classifier [52]
for each slot. More specifically, we pose the problem of
associating an instance to a slot as a two-class problem,
slot vs. background. The LDA classifier is a linear classi-
fier with closed form solution w = Σ−1(µ+−µ−) and b =

log(π
+

π− )− 1
2 (µ+−µ−)Σ−1(µ++µ−). Here µ+ is the mean

of all instances in a slot, µ− is the mean of background
class, π+/π− are number of samples in positive/background
classes, and Σ is the class conditional covariance matrix (as-
sumed to be same for positive/background [52, 53]). The
background class statistics, (Σ, µ0), can be estimated effi-
ciently offline using an online update formula operating on
boxes from all images from the dataset [52, 53] (derivations
are included in the supplementary material). We use the
classifier score, (wT f + b), to evaluate the association of
the instance feature f to a slot. An added benefit of this
closed-form solution is that to update the classifier with a
new instance, we only need to update π+.

Different slot representations exhibit different perfor-
mance and scalability characteristics, and understanding
them are crucial for the decision making process of the re-
trieval module. Centroids are fast to calculate, but not as
accurate, whereas classifiers are slow, but accurate.

Recall that Ms is the stable long term memory, repre-
senting classes (known or discovered) with enough sam-
ples; and Mw is the volatile short term memory, stor-
ing ‘novel’ concepts we encounter, adding/deleting slots
frequently, and often with few instances. Therefore, we
use classifiers for Ms, where a slot i is (wi, bi) or
(µ+
i , π

+
i , µ

−,Σ, π−); and centroids for Mw, where a slot
j is (µC

j , πj) (πj is number of instances, needed for cumu-
lative moving average). Note that since (µ−, π−,Σ) are
shared across all slots in Ms, the implementation of both
Ms andMw are similar. As previously mentioned,Ms is
initialized with ‘semantic priors’, which are computed us-
ing the detector’s outputs on the training set; i.e., we take
detections with score > 0.9 and compute a slot representa-



tion for each class inMs. We limit the total number of slots
inMs andMw combined to 2000.

Retrieval: The retrieval module is tasked with making de-
cisions for our method. It takes as input the current state of
storage and the features of the region being considered, and
makes a decision. For decision making, we draw inspira-
tion from the intuitive item recognition model [54]. Given
a region, we invoke the Semantic Memory Ms with clas-
sifier slot representations for each known (includes previ-
ously discovered) objects and use it to determine if the new
region corresponds to a known class. As mentioned above,
the association with a slot inMs is evaluated using the clas-
sifier score. If so, we update the matching (µ+

i , π
+
i ) inMs

(‘UpdateMs’ in Figure 3). If the instance does not corre-
spond to any known object, it likely implies that the region
potentially contains a ‘novel’ object. The retrieval process
continues by invoking the Working MemoryMw to check
if this region corresponds to a slot inMw or a new singleton
slot needs to be created (‘UpdateMw’ or ‘Create inMw’
respectively, in Figure 3). This is done by computing the
cosine similarity between the region’s feature and centroids
of all the slots in Mw. If a slot in Mw has high similar-
ity with the region, then that slot centroid is updated using
a moving average. If the region cannot be associated with
any of the slots inMw, a new slot is created.

Memory Consolidation: The Working MemoryMw is re-
sponsible for discovering new concepts, and after consis-
tent/repeated occurrence of these concepts, they should be
amalgamated with the Semantic memory Ms. Towards
this, we propose a memory consolidation step, where repre-
sentations formed in the Working Memory are added to the
Semantic Memory, extending our repertoire of known cate-
gories. To move slots fromMw toMs, we train an LDA
classifier on the centroids in Mw. A naı̈ve consolidation
step is to use these new classifiers as slots inMs. However,
since the slots in Mw are essentially online learned clus-
ters, we often encounter fragmented clusters for one con-
cept. To merge multiple clusters of the same categories, we
perform an iterative merge step formulated as a graph clus-
tering problem, where each slot is a node and edge weights
are based on how well classifiers fire on other slots. We
obtain connected components using MinCut and proceed to
merge the samples from slots in the same component. This
step gives us the flexibility of re-assigning samples of one
slot to another based on its relative affinity. Though less
fragmented, the resulting slots after the merge operation can
be incoherent and lead to semantic drift [19]. E.g., samples
from a smaller slot (say fire hydrant) can get merged with a
larger slot (say bottle) due to their visual affinity to the bot-
tle centroid. To ensure that slots consolidated intoMs are
coherent, we perform a final refine step, where we remove
all samples from the slot that do not activate its classifier
(i.e., wTx + b < 0). After memory consolidation, Mw is

reinitialized to its original state (i.e., null), and the number
of slots increase inMs. Refer to the supplementary mate-
rial for detailed merge, refine, and consolidation algorithms.

Discovery set: Given a dataset, we perform our discovery
process in a sequential manner. This allows us to abstain
from making assumptions about the availability of data all
at once. To discourage the network from memorizing [56],
and to leverage the fact that errors made by classifiers on
different images will be different [30], we split the discov-
ery dataset into two disjoint sets (c.f . [56]): D1 and D2.
First, we run discovery and localization on D1 (discovery
set) and fill the storage slots. Then, after memory consol-
idation, we use classifiers inMs on D2 (validation set) to
find more examples. The expectation is that the classifiers
will find correct and diverse samples, but not detect error
modes from the first setD1. After updatingMs using these
samples, we swap D1 and D2, and continue the process.

5. Experimental Setup
5.1. Benchmark Datasets
Labeled and Discovery Datasets: Our benchmark builds
on two datasets: (1) Pascal VOC 2007 [51], which has
10k images with annotations for 20 classes, and (2) COCO
2014 [57] which has ∼80k train and 5k validation images
with annotations for 80 classes. Our benchmark assumes
VOC is the known set, with 20 known classes, and COCO
represents the in-the-wild real-world dataset which we use
to benchmark concept discovery and localization. Out of
the 80 COCO classes, 60 classes that do not overlap with
VOC are treated as novel or unknown for evaluation. We
use ImageNet [58] for pretraining, but do not use any class
similar to the 60 unknown classes (discussed later).
Justification and Discussion. Difficulty: Even with 60 un-
knowns, this is an extremely challenging problem setup,
and no other discovery benchmark matches its scale and
difficulty; and no current approach can scale to this real-
istic setup. Another challenge is the different distribution
of images – COCO images are more complex, have more
objects per image, and there is a large portion of the discov-
ery dataset which do not have any known class (distractor
images). This is also a departure from standard discovery
datasets, where all images contain at least one of the ob-
jects of interest, providing a strong signal. Semantic drift:
Another benefit is that there are unknown categories (e.g.,
bear, zebra, truck, laptop) available, which are visually
quite similar to the 20 known categories (e.g., dog, horse,
car, tv, monitor) from VOC. A discovery and never-ending
approach needs to successfully separate these classes to
avoid semantic drift [19]. Localization focus: Most im-
portantly, these are detection datasets with bounding box
labels, which are suited for evaluating localization. Unla-
beled unknowns: Note that an approach can certainly dis-



Table 1: Large-scale Object discovery on the
entire COCO train2014 (80k images). Compar-
isons with scalable clustering methods using AuC
for unknown classes.

Method AuC@0.5 AuC@0.2 #disc. objs

K-means 3.34 7.23 42
FINCH [55] 3.03 6.99 42
Ours 3.60 9.11 46

Table 2: Smaller-scale Object discovery on
subsets of COCO train2014 (2.5k/20k images).
Comparison with contemporary discovery meth-
ods using AuC for unknown classes.

Method #imgs. CorLoc CorRet DetRate

OSD [2] 2.5k 6.62 80.00 4.73
OSD† 2.5k 6.34 70.00 5.17
Ours 2.5k 43.00 64.22 48.56

rOSD [1] 20k 15.77 100.0 11.56
Ours 20k 41.41 64.60 46.81

†: OSD with ResNet-101 Faster R-CNN proposals and
classification-head features (same as Ours).
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Figure 4: Qualitative results (labeled unknown) (entire COCO train2014): Concepts discovered by
our approach which we can evaluate using the ground-truth annotations for the 60 ‘unknown’ classes.

Figure 5: Qualitative results (unlabeled unknown) (entire COCO train2014): Concepts discovered
by our approach which we cannot evaluate since they are unlabeled (not in the 60 ‘unknown’ classes).

cover more than the available 60 unknowns objects. How-
ever, due to the lack of labels, we can only evaluate the
quantitative performance of part of the discovered and lo-
calized objects and visualize other discovered unknowns.
Pretraining Dataset: Pretraining on ImageNet 1000
classes, a mainstay in object recognition [50, 59–63],
creates an issue for any discovery setup – these 1000
classes might overlap with unknown classes being evalu-
ated. Therefore, to avoid all ambiguity, we identify and
eliminate 68 ImageNet classes similar to the 60 novel
COCO classes; and refer to this split as ImageNet−. For
the complete list of classes removed from Imagenet for pre-
training, training and performance details of the backbone
and known detector (Faster-RCNN), we direct the readers
to the supplementary material.

5.2. Evaluation Metrics
Evaluating concept discovery and localization is quite

challenging. The two families of approaches discussed in
Section 1 evaluate on different sets of metrics. For com-
pleteness, we report on all metrics used by related ap-
proaches, despite their shortcomings, and highlight some
metrics that are useful for future works.
Co-localization/Recall Metrics: Several contemporary ap-
proaches [1, 3] used three co-segmentation/localization
metrics to evaluate concept discovery. CorLoc (correct
localization) [3] is defined as the percentage of images
in which any single object is correctly localized with
intersection-over-union (IoU)>0.5 with the ground-truth.
CorRet (correct retrieval) [3] is defined as the mean per-
centage of k nearest neighbors (k=10), identified by re-
trieval for each image, that belong to the same (ground-
truth) class as the image itself. DetRate (detection rate) [1]
is the standard recall measure. There are important short-
comings of the metrics described above. CorLoc and De-
tRate measure the localization capabilities and do not reflect

the discovery performance. Such metrics are more suitable
for tasks like co-segmentation/localization (for which they
were originally proposed). Neither of these metrics mea-
sure the number of objects actually discovered by the al-
gorithm. Moreover, CorLoc and CorRet assume the num-
ber of instances per image is 1, which is overly simplistic
and does not hold for datasets like COCO (or even for most
VOC images). Finally, DetRate is simply the recall of the
region proposal network [50] and does not give any useful
information about the discovery algorithm itself. We report
these metrics for completeness, but they are not appropriate
for our benchmark.
Discovery/Pattern-mining Metrics: Some approaches in
object discovery [5, 6] and visual pattern mining [38, 56]
explored forms of Purity-Coverage plots and/or mean Aver-
age Prevision (mAP) to evaluate their mining or discovery
methods. Following [5, 6, 38], we argue that it is natural to
evaluate concept discovery methods using such clustering-
based metrics as opposed to co-segmentation metrics. We
report Area-under-the-curve (AuC) of the Cumulative Pu-
rity vs. Coverage plots from [38]. Along with this, we
also report the number of novel objects discovered to eval-
uate the efficacy of the discovery process. We contend that
these metrics together offer a fair assessment across meth-
ods. Other plots (e.g., # of discovered objects vs. coverage,
# of discovered objects/cumulative purity/coverage vs. # of
clusters) offer ablative insights but have limited compara-
tive benefit, and we provide them in the supplementary.
Details. To compute cumulative purity, we first compute
purity of all the clusters and sort them in the descend-
ing order of their purity. Then, for the kth point on the
curve, we compute the average purity of top-k clusters and
plot it against coverage. We define purity of a cluster as
maxc∈C

# of samples assigned to class c
Total # of samples in cluster , where C is the set of all

classes in COCO. A sample of a cluster is assigned to class



Table 3: Detection performance (mAP) for
object detectors on COCO minival, trained us-
ing oracle labels for clusters. †: mAP of
classes with AP greater than chance.

Classes (#) GT-IoU: 0.5 GT-IoU: 0.2

AP@0.5 AP@0.2 AP@0.5 AP@0.2

All (80) 2.69 4.44 2.62 4.37
Novel (60) 1.87 3.50 1.76 3.42
Novel† 5.23 6.47 5.45 6.40

Stop Sign (AP: 3.938) Pizza (AP: 6.994)Fire Hydrant (AP: 4.85) Bear (AP: 17.38) Donut (AP: 1.53) Teddy bear (AP: 5.65)
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Figure 6: Sample detections and class-wise AP on COCO minival using our object detectors trained
novel classes using oracle labels. Many more detection results are provided in the supplementary.

c if it has IoU≥ threshold with ground-truth box (of class c)
in the image. We define coverage as the fraction of ground-
truth boxes covered by our method, i.e., if there is at least
one proposal with IoU ≥ threshold with the ground-truth.
Oracle Detection Metric: We also evaluate our approach
by training an object detector on the discovered clusters and
evaluating it on an held-out set (COCO-minival). We as-
sume the availability of an ‘oracle,’ in the form of ground-
truth annotations to assign class labels to each cluster based
on majority voting. We use different IoU thresholds for
class assignment (0.2/0.5). After training a detector, all
boxes rejected by all the classifiers are treated as back-
ground. We evaluate using AP at 0.2 and 0.5 IoU. We do
not perform any bounding box regression. This provides
proxy results, as if we used a human-annotator to provide
a single label (out of 60 unknown classes) for each cluster.
Since these are reproducible ‘oracle’ labels, we encourage
future works to continue reporting this metric.

6. Results and Analysis
6.1. Baselines
Object discovery baselines: We compare our approach
with two recent state-of-the-art object discovery methods:
OSD [2] and rOSD [1]. OSD is an unsupervised method
that solves an optimization problem to discover and match
object classes among images in a collection. rOSD builds
on [2] and is the first large-scale method to perform discov-
ery of multiple objects.

Comparing our approach with other related methods
such as [1–4] is not appropriate due several reasons: (1) they
perform discovery on VOC, which is eight times smaller
in scale compared to COCO, and (2) they do not assume
knowledge of known classes. Unfortunately, adapting their
official public code to scale to COCO was unsuccessful.
[6, 44] is closest to our setting, but these methods also suffer
from computational scalability and are unable to perform
discovery on cluttered environments in COCO.
Clustering baselines: In addition, we compare with two
clustering methods: K-means and FINCH [55]. K-means
requires the number of clusters as input, which is hard to
estimate; therefore, we use the number of discovered slots
from our approach for K-means for fairness. FINCH [55]
is a parameter-free clustering method that automatically dis-
covers groupings in the data based on the first nearest neigh-
bors. We pick the clustering that is closest to our discovered

number of slots for fairness. Both K-means and FINCH do
not scale well to large datasets like COCO with millions of
regions. To circumvent this issue, we cluster 150 proposals
in 10000 images and do a greedy label propagation to get
cluster assignments for all the images [64].

6.2. Object Discovery Results
Large-scale Quantitative Evaluation: We report the AuC
results (unknown classes) of our large-scale setup on the
COCO2014 train set in Table 1, which uses all the 80k
images. We recommend this setup for future comparisons.
Since no other discovery approach can scale to these many
boxes and images, we can only compare our method with
K-means and FINCH. Both baselines perform worse com-
pared to our approach, because similarity computation of
visual features for clustering is not sufficient to form coher-
ent clusters [53]. Low AuC values across approaches sug-
gest there is tremendous scope for improvement in this do-
main. Our approach also discovers more objects than these
two baselines (46 vs. 42), but there are fourteen categories
that are are not discovered.
Smaller-scale Quantitative Evaluation: To compare
with [2] (OSD), we modified their code (with some as-
sumptions) to run on 2.5k images from COCO. We run our
method on the same split and report the results in Table 2.
Originally, OSD [2] used Randomized Prim proposals with
whitened HoG features (OSD in Table 2). For fairer com-
parison, we replace their proposals and features with those
used by our approach (ResNet-101+Faster R-CNN) and
report the results as OSD† in Table 2. Our approach handily
outperforms OSD on CorLoc and DetRate, whereas OSD
performs better on CorRet. In fact, OSD with proposals and
features from Faster R-CNN performs worse compared to
original OSD, consistent with [2]. One explanation is that
deep features are typically trained for image classification
while [2] requires region matching. Moreover, since only
few regions are localized by OSD, it results in fewer false
positives, thereby resulting in a higher CorRet.

Next, we compare with rOSD [1], the first method to
scale up to 20k images from COCO (we use the same split
from [1]) and report the results in Table 2 (20k). We ob-
serve a similar pattern for each metric as earlier. We would
like to reiterate that none of these metrics (CorLoc, CorRet,
and DetRate) adequately measure the object discovery per-
formance and are only provided for completeness.



Table 4: Ablation analysis for different initializa-
tions for Ms performed on mini-train set.

Init.
(Ms)

CorLoc CorRet AuC #disc.
objs

@0.5 @0.2

φ (Null) 40.21 61.31 2.31 8.00 27
Det. Scores 40.88 61.83 2.97 8.46 27
GT Overlap 40.96 61.77 2.77 8.65 30

Table 5: Memory consolidation component anal-
ysis performed on mini-train set.

Method
CorLoc CorRet AuC #disc.

objs
@0.5 @0.2

Naı̈ve 42.57 63.12 3.70 9.60 44

+ Merge (M) 42.57 62.21 3.80 9.79 44

+ M + Refine 41.20 65.88 4.02 10.68 43

Table 6: Recall of VOC2007 detectors on the
COCO2014 train set.

Classes (#) ImageNet ImageNet−

@0.5 @0.2 @0.5 @0.2

All (80) 44.26 57.49 46.33 59.29
VOC (20) 71.26 80.07 71.67 80.47
Novel (60) 35.26 49.96 37.88 52.23

Qualitative Results: We show some discovered clusters in
Figure 4 from the COCO train set which we evaluated in
this section (60 labeled unknown in COCO). In Figure 5, we
show some discovered clusters which we could not evaluate
because they are unlabeled in COCO (unlabeled unknown).
Many more examples are provided in the supplementary.

6.3. Object Detection Results
To demonstrate the performance of our approach on

novel data, we evaluate detectors obtained from our ap-
proach on COCO-minival using the Oracle Detection Met-
ric methodology described in §5.2. Note that this is a pur-
poseful benefit of our VOC-COCO setup, where we can
assume the availability of an ‘oracle’ for the 60 unknown
classes and train a detector from our discovered clusters.
In Table 3, we report results by assigning labels with dif-
ferent ground-truth IoU thresholds (0.2/0.5) and evaluating
COCO AP at 0.2 and 0.5 IoU. We report AP results for all
80 COCO objects, all 60 novel objects, and for novel objects
whose performance is greater than chance (Novel†). Novel†

objects achieve >5 AP performance, which is reminiscent
of early days of complex object detection.

Next, we show the per-class AP, for the model evaluated
at 0.5 IoU for the discovered classes in Figure 6. We also
visualize the detections on COCO-minival for few random
categories. Evidently, the detectors display a lot of intra-
class variation. We achieve the highest AP of∼ 17.38% for
the bear class and a lowest mAP of 0.08% for traffic lights.

6.4. Ablation Analysis
Finally, we evaluate several design choices in our frame-

work. For tractability, we perform all ablation studies on
a randomly selected subset of 5000 training images from
the COCO2014 train set. To ensure that results from the
analysis translate to the entire dataset, we compare the dis-
tribution of objects in this mini-train and the entire train set
in the supplementary.
Semantic Memory Initialization: To understand how the
initialization of Semantic Memory Ms with features of
known categories influences the discovery process, we run
the discovery method without this initialization and report
results in Table 4 (rows 1-2), which demonstrates the impor-
tance of prior knowledge. We use detection results to ini-
tializeMs (see §4). Here, we discuss an alternate, higher-
quality initialization, where we assume access to ground-
truth annotations for the 20 known classes in COCO (which
might not be available in most scenarios). For each known
category, we compute the feature centroid of all boxes with

IoU> 0.5 with ground-truth. Results in Table 4 (row 3)
shows that this helps discover more objects.
Memory Consolidation Component Analysis: We ana-
lyze the contribution of different components of our mem-
ory consolidation step in Table 5. For evaluation, all clus-
ters with regions from less than 5 images are dropped. The
merge step improves the AuC for unknown classes because
it reassigns cluster memberships based on affinity scores.
The refine step further improves the purity of a cluster by
dropping all incoherent samples, which increases AuC and
CorRet, but drops CorLoc slightly.
Recall Analysis: Since most discovery approaches, includ-
ing ours, rely on region proposals, we explore how good
are VOC-trained proposal generators for unseen ‘novel’
classes. We compute the recall of these proposals at IoU
thresholds of 0.2 and 0.5 on the entire COCO2014 train split
and report results in Table 6 for all classes (‘All’), for 20
known VOC classes (‘VOC’), and for 60 unknown classes
(‘Novel’). As we can see, the recall for unknown classes
significantly lags behind known classes. This gives us a per-
formance upper-bound for all discovery methods discussed
in this work. This also strongly suggests that future research
in better proposal generators is needed that can generalize
to unseen categories.
Discovery Rounds: Since our approach can run in a never-
ending fashion, we assess how many rounds are needed for
convergence and how the performance changes across iter-
ations. These results are reported in the supplementary.

Conclusion and Future Work. We presented a dual
memory formulation, which can exploit prior knowledge
about known objects to discover and localize novel cate-
gories in-the-wild. We perform extensive experiments to
validate our claims. However, as the raw numbers indicate,
there is a lot of scope for improving current object discov-
ery and localization methods, especially for complex scenes
and realistic benchmarks. One immediate future work is to
adapt deep neural network-based region proposal methods
to generalize beyond their training datasets and seen classes.
Another exciting future direction is a new paradigm of su-
pervised recognition, which is more suited for adaptation to
in-the-wild discovery setups.
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